Development of solar fuels photoanodes through combinatorial integration of NiLaCoCe oxide catalysts on BiVO4
نویسندگان
چکیده
The development of an efficient photoanode remains the primary materials challenge in the establishment of a scalable technology for solar water splitting. The typical photoanode architecture consists of a semiconductor light absorber coated with a metal oxide that serves a combination of functions, including corrosion protection, electrocatalysis, light trapping, hole transport, and elimination of deleterious recombination sites. To date, such coatings have been mostly limited to simple materials such as TiO2 and Co-Pi, with extensive experimental and theoretical effort required to provide an understanding of the physics and chemistry of the semiconductor-coating interface. To provide a more efficient exploration of metal oxide coatings for a given light absorber, we introduce a high throughput methodology wherein a uniform BiVO4 thin film is coated with 858 unique metal oxides covering a range of metal oxide loadings and the full Ni–La–Co–Ce oxide quaternary composition space. Photoelectrochemical characterization of each photoanode reveals that approximately one third of the coatings lower the photoanode performance while select combinations of metal oxide composition and loading provide up to a 14-fold increase in the maximum photoelectrochemical power generation for oxygen evolution in pH 13 electrolyte. Particular Ce-rich coatings also exhibit an anti-reflection effect that further amplifies the performance, yielding a 20-fold enhancement in power conversion efficiency compared to bare BiVO4. By use of in situ optical spectroscopy and comparisons between the metal oxide coatings and their extrinsic optical and electrocatalytic properties, we present a suite of data-driven discoveries, including composition regions which form optimal interfaces with BiVO4 and photoanodes that are suitable for integration with a photocathode due to their excellent power conversion and solar transmission efficiencies. The high throughput experimentation and informatics provides a powerful platform for both identifying the pertinent interfaces for further study and discovering high performance photoanodes for incorporation into efficient water splitting devices.
منابع مشابه
Discovery of Fe-Ce Oxide/BiVO4 Photoanodes through Combinatorial Exploration of Ni-Fe-Co-Ce Oxide Coatings.
An efficient photoanode is a prerequisite for a viable solar fuels technology. The challenges to realizing an efficient photoanode include the integration of a semiconductor light absorber and a metal oxide electrocatalyst to optimize corrosion protection, light trapping, hole transport, and photocarrier recombination sites. To efficiently explore metal oxide coatings, we employ a high-throughp...
متن کاملPhotocharged BiVO4 photoanodes for improved solar water splitting
Bismuth vanadate (BiVO4) is a promising semiconductor material for the production of solar fuels via photoelectrochemical water splitting, however, it suffers from substantial recombination losses that limit its performance to well below its theoretical maximum. Here we demonstrate for the first time that the photoelectrochemical (PEC) performance of BiVO4 photoanodes can be dramatically improv...
متن کاملRecent Advances in the BiVO4 Photocatalyst for Sun-Driven Water Oxidation: Top-Performing Photoanodes and Scale-Up Challenges
Photoelectrochemical (PEC) water splitting, which is a type of artificial photosynthesis, is a sustainable way of converting solar energy into chemical energy. The water oxidation half-reaction has always represented the bottleneck of this process because of the thermodynamic and kinetic challenges that are involved. Several materials have been explored and studied to address the issues pertain...
متن کاملCobalt Hexacyanoferrate on BiVO4 Photoanodes for Robust Water Splitting
The efficient integration of photoactive and catalytic materials is key to promoting photoelectrochemical water splitting as a sustainable energy technology built on solar power. Here, we report highly stable water splitting photoanodes from BiVO4 photoactive cores decorated with CoFe Prussian blue-type electrocatalysts (CoFe-PB). This combination decreases the onset potential of BiVO4 by ∼0.8 ...
متن کاملPlasmon-enhanced nanoporous BiVO4 photoanodes for efficient photoelectrochemical water oxidation.
Conversion of solar irradiation into chemical fuels such as hydrogen with the use of a photoelectrochemical (PEC) cell is an attractive strategy for green energy. The promising technique of incorporating metal nanoparticles (NPs) in the photoelectrodes is being explored to enhance the performance of the photoelectrodes. In this work, we developed Au-NPs-functionalized nanoporous BiVO4 photoanod...
متن کامل